Controlled Document

Page 1 of 5

Version: 3.0.0

Approved by: Exam Development Board

Development Board

Approved on: 01/01/19 Supersedes: 2.1.2

Effective Date: 01/01/20

Privacy Technology Certification

Outline of the Body of Knowledge (BOK) for the Certified Information Privacy Technologist (CIPT)

I. Foundational Principles

- A. Privacy Risk Models and Frameworks
 - a. Nissenbaum's Contextual Integrity
 - b.Calo's Harms Dimensions
 - c. Legal Compliance
 - d.FIPPs
 - e.NIST/NICE frameworks
 - f. FAIR (Factors Analysis in Information Risk)
- B. Privacy by Design Foundational Principles
 - a.Full Life Cycle Protection
 - b.Embedded into Design
 - c. Full Functionality
 - d. Visibility and Transparency
 - e.Proactive not Reactive
 - f. Privacy by Default
 - g.Respect for Users
- C. Value Sensitive Design
 - a. How Design Affects Users
 - b.14 Methods
 - c. Strategies for Skillful practice
- D. The Data Life Cycle
 - a.Collection
 - b.Use
 - c. Disclosure
 - d.Retention
 - e.Destruction

II. The Role of IT in Privacy

- A. Fundamentals of privacy-related IT
 - a. Organization privacy notice

Controlled Document

Version: 3.0.0

Approved by: Exam Page 2 of 5 **Development Board**

> **Approved on: 01/01/19** Supersedes: 2.1.2

b. Organization internal privacy policies

c. Organization security policies, including data classification policies and schema, data retention and data deletion

Effective Date: 01/01/20

- d.Other commitments made by the organization (contracts, agreements)
- e.Common IT Frameworks (COBIT, ITIL, etc.)
- f. Data inventories
- q.Enterprise architecture and data flows, including cross-border transfers
- h.Privacy impact assessments (PIAs)

B. Information Security

- a. Security requirements in commercial transactions and the law
- b.Incident response—security and privacy perspectives
- c. Security and privacy in the systems development life cycle (SDLC) process
- d. Privacy and security regulations with specific IT requirements

C. Information Governance

- a. Basic principles
- D. The privacy role of the IT professional
 - a. Providing feedback on policies
 - b. Providing feedback on contractual and regulatory requirements

Privacy Threats and Violations III.

- A. <u>During Data Collection</u>
 - a. Asking people to reveal personal information
 - b.Surveillance
- B. During Use
 - a.Insecurity
 - b.Identification
 - c. Aggregation
 - d.Secondary Use
 - e.Exclusion

C. During Dissemination

- a.Disclosure
- b.Distortion
- c. Exposure
- d.Breach of Confidentiality
- e.Increased accessibility
- f. Blackmail
- g.Appropriation

D. Intrusion, Decisional Interference and Self Representation

- a. Behavioral advertising
- b.Cyberbullying
- c. Social engineering

E. Software Security

- a. Vulnerability management
- b.Intrusion reports

Controlled Document Page 3 of 5

Approved by: Exam Development Board

Effective Date: 01/01/20

of privacy professionals www.privacyassociation.org

Version: 3.0.0

Approved on: 01/01/19 Supersedes: 2.1.2

- c. Patches
- d.Upgrades
- e.Open-source vs Closed-source

Technical Measures and Privacy Enhancing Technologies IV.

A. Data Oriented Strategies

- a.Separate
 - Distribute i.
 - ii. Isolate
- b.Minimize
 - i. Exclude
 - ii. Select
 - iii. Strip
 - iv. Destroy

c. Abstract

- Group i.
- ii. Summarize
- iii. Perturb

d.Hide

- Restrict i.
- ii. Mix
- iii. Obfuscate
- iv. Dissociate

B. Techniques

a.Aggregation

- Frequency and magnitude data i.
- Noise addition through differential privacy
- iii. Differential identifiability

b.De-identification

- i. Anonymize
- ii. Pseudonymize
- iii. Labels that point to individuals
- iv. Strong and weak identifiers
- v. Degrees of Identifiability
- vi. *k*-anonymity, *l*-diversity, *t*-closeness
- vii. Tokenization

c. Encryption

- Algorithms and Keys i.
- Symmetric and Asymmetric
- iii. Crypto design and implementation considerations
- iv. Application or field encryption
- v. Quantum encryption vi. Public Key Infrastructure
- vii. Homomorphic
- viii. Polymorphic
- ix. Mix networks
- x. Secure multi-party computation
- xi. Private information retrieval
- d.Identity and access management

Pease International Tradeport - 75 Rochester Avenue. Suite 4 - Portsmouth, NH 03801 USA +1 603.427.9200 - certification@privacyassociation.org

Controlled Document Page 4 of 5

Approved by: Exam Development Board

Effective Date: 01/01/20

international association of privacy professionals www.privacyassociation.org

Version: 3.0.0

Approved on: 01/01/19 Supersedes: 2.1.2

i. Limitations of access management as a privacy tool

- ii. Principle of least-privilege required
- iii. Role-based access control (RBAC)
- iv. User-based access controls
- v. Context of authority
- vi. Cross-enterprise authentication and authorization models
- vii. Federated identity
- viii. BYOD issues

e. Authentication

- i. Single/multi factor authentication
- ii. Something you know (usernames, passwords)
- iii. Something you are (biometrics, facial recognition, location)
- iv. Something you have (tokens, keys)

C. Process Oriented Strategies

- a. Informing the Individual
 - i. Supply
 - ii. Notify
 - iii. Explain
- b.User Control
 - i. Consent
 - ii. Choose
 - iii. Update
 - iv. Retract
- c. Policy and Process Enforcement
 - i. Create
 - ii. Maintain
 - iii. Uphold
- d.Demonstrate Compliance
 - i. Log
 - ii. Audit
 - iii. Report

v. Privacy Engineering

- A. The Privacy Engineering role in the organization
- B. Privacy Engineering Objectives
 - a.Predictability
 - b.Manageability
 - c. Dissociability
- C. Privacy Design Patterns
 - a.Design patterns to emulate
 - b.Dark patterns to avoid
- D. Privacy Risks in Software
 - a.Risks
 - b.Countermeasures

VI. Privacy by Design Methodology

Controlled Document

Page 5 of 5

Version: 3.0.0

Approved by: Exam Development Board

Approved on: 01/01/19 Supersedes: 2.1.2

Effective Date: 01/01/20

A. The Privacy by Design Process

- a. Goal Setting
- b.Documenting Requirements
- c. Understanding quality attributes
- d.Identify information needs
- e. High level design
- f. Low level design and implementation
- g.Impose controls
 - 1. Architect
 - 2. Secure
 - 3. Supervise
 - 4. Balance
- h.Testing and validation

B. Ongoing Vigilance

- a.Code reviews
- b.Code audits
- c. Runtime behavior monitoring
- d.Software evolution

VII. Technology Challenges for Privacy

A. Automated decision making

- a. Machine learning
- b.Deep learning
- c. Artificial Intelligence (AI)
- d.Context aware computing

B. Tracking and Surveillance

- a. Internet monitoring
- b.Web tracking
- c. Location tracking
- d.Audio and Video Surveillance
- e.Drones

C. Anthropomorphism

- a.Speech recognition
- b.Natural language understanding
- c. Natural language generation
- d.Chat bots
- e.Robots

D. <u>Ubiquitous computing</u>

- a.Internet of Things (IoT)
- b. Vehicular automation
- c. Wearable devices

E. Mobile Social Computing

- a.Geo-tagging
- b.Geo-social patterns